

C# Cheat Sheet

INTRODUCTION

C# is a powerful Object Orientated language, for those coming from Java or C++ you should be able to pick up

the syntax for C# quickly. A few points:

 The language is case-sensitive (So A and a are different)

 Lines terminate with semi-colons

 Code is put in code blocks { }

 Inline comments start with //

 Block comments start with /* */

 XML comments start with ///

VARIABLES
To declare a variable you specify the data type and variable name followed by a value.

SYNTAX

DataType variableName = value;

NAMING RULES

 Variables must start with underscore or
letter

 Variables cannot contain spaces

 variables can contain numbers

 Cannot contain symbols (accept
underscore)

EXAMPLE
string Name = "thecodingguys";

int Year = 2013;

I will use these two variables throughout.

ARRAYS
Arrays are similar to variables, but can hold more than one value.

SYNTAX

DataType[] ArrayName = { Comma Separated
Values } // Array of any size

DataType[] ArrayName = new DataType[3]
{Command Separated Values } //Expects 3 values

EXAMPLE
string[] MyGamesOf2013 = {"GTAV",
"Battlefield3"};

string[] MyMoveisOf2013 = new string[3]
{"The Amazing Spiderman", "The Expendables

2", "Rise of the planet of the apes"};

Records
Record structures allow you to store multiple data types under one identifier name. You can create an array of them

to store lots of data

Syntax
Must be declared outside the of any method as a global
public struct StructName
 {
 public string field1;
 public int field2;
 public string field3;
 public int field4;
 }

Run within a method:
StructName [] ArrayName = new StructName [20];

Example
public struct Results
 {
 public string hometeam;
 public int hometeamscore;
 public string awayteam;
 public int awayteamscore;
 }

Run within a method:
Results[] results = new Results[20];

STRINGS - CONCATENATION

Concatenation is done through the + operator.

EXAMPLE

Console.WriteLine("Hello " + "World");

NEW LINE

EXAMPLE

Console.WriteLine("Hello \n" + "World");

STRING.FORMAT

Formats an object, you specify the formatting you wish to perform, the following formats an integer and

displays the currency symbol.

EXAMPLE

Console.WriteLine(string.Format("{0:C}", 5));

Depending on your computers regional settings you will see £5.00 displayed (You’ll see your countries

currency symbol). The 0:C is the formatting we wish to do, in this case it means format the first parameter (0)

and show a currency sign.

Random Number Generation
Generate a random number between user defined values

Syntax
Random NAMEOFRANDOM = new Random();
number = NAMEOFRANDOM.Next(value1, value2);

Example
Random r = new Random();
number = r.Next(0, 13);

IF STATEMENTS

if statement is used to execute code based on a condition the condition must evaluate to true for the code to

execute.

SYNTAX

if (true)

{

}
else
{

}

EXAMPLE

if (Year > 2010)

{

Console.WriteLine("Hello World!");

}
else

{
Console.WriteLine("Year is: " + Year);
}

SWITCH STATEMENT

Similar to the If else statement, however it has these benefits.

 Much easier to read and maintain

 Much cleaner then using nested if else

 It only evaluates one variable

SYNTAX

switch (switch_on)

{

default:

}

EXAMPLE

switch (Year)

{

case 2013:

Console.WriteLine("It's 2013!");

break;

case 2012:

Console.WriteLine("It's 2012!");

break;

default:

Console.WriteLine("It's " + Year +
"!");

break;

}

The break keyword is required as it prevents case falling.

WHILE LOOP
Continuously loops code until the condition becomes false.

SYNTAX
while (true)

{

}

EXAMPLE

while (Year >= 2013)

{

if (Year != 2100)

{

Console.WriteLine(Year++);
}

else

{

}

}
break;

Make sure your condition evaluates to false at some point otherwise the loop is endless and it can result in

errors.

FOR LOOP

Similar to the While Loop, but you specify when the loop will end.

SYNTAX

for (int i = 0; i < length; i++)

{

}

EXAMPLE

for (int i = 0; i <= 100; i++)

{

Console.WriteLine(i);

}

This prints out 1 to 100. The expression can be
easily broken down like this: I = 0;
I Is less than or equal to 100? (True) Increment I by
1
When I reaches 100 it will stop because I will no
longer be less than100 and will equal 100 so the
condition is false.

FOR EACH
The for each loop is used to loop around a collection. (Such as an array)

SYNTAX

foreach (var item in collection)

{

}

EXAMPLE

foreach (string movie in MyMoveisOf2013)

{

Console.WriteLine(movie);

}

Outputs all the elements in the MyMoviesOf2013
array.

EXCEPTION Handling

To catch any exceptions which are likely to occur you use a try catch block.

SYNTAX

try

{

}

catch (Exception)

{

}

EXAMPLE

try

{
string result = "k";

Console.WriteLine(Convert.ToInt32(result) +

10);

}

catch (Exception ex)

{

Console.WriteLine(ex.Message);

}

The above code results in a format exception,
because you can’t convert K to a number

METHODS

SYNTAX
public void MethodName()

{

//Does not return a value

}

public static void MethodName()

{

//Does not return a value, the class does
not need to be initialized

//for this method to be used.

}

public static DataType MethodName()

{

//Requires a value to be returned, class

does not need to be initialized for this

method to be used.

}

EXAMPLE
public static void WelcomeUser()

{

Console.WriteLine("Hello Guest!");

}

Passing Parameters
public static void WelcomeUser(string Name)

{

Console.WriteLine("Hello " + Name + "!");

}

Since both methods have the same name and
different parameters (One takes no parameters and
the other one does) this is said to be an overloaded
method.

Returning Data
public static DateTime Tomorrow()

{

return DateTime.Now.AddDays(1);

}

All the examples above are static, this allows me to

use the methods without initializing the class. You

can read more about

CLASSES

SYNTAX
Class MyClassName

{

}

EXAMPLE
class MyCar

{

public void Manufacturer(string Manf)

{

Console.WriteLine(Manf);

}

}

To use the method in the class, the class must be initialized first.

MyCar NewCar = new MyCar(); NewCar.Manufacturer("Audi");

If the method was declared static I could simply do this:

MyCar.Manufacturer(“Audi”);

Static methods are useful, make sure you are using the right design for your classes and methods. A good

example is the Math class, to perform simple calculations you do not want to be initializing the class all the

time, that’s why most methods are static.

